Переписать в тетрадь данный теоретический материал! Вместе с примерами и со всеми пояснениями! Без сокращений!

Конспекыт прислать ТОЛЬКО В ЛИЧНОЕ СООБЩЕНИЕ В КОНТАКТ https://vk.com/id588363475

РАБОТЫ В КОММЕРАРИЯХ НЕ ПРИНИМАЮ

Запишите в тетрадь тему урока и законспектируйте теоретический 1. материал.

Тема «Показательные уравнения».

Показательным уравнением называется уравнение, содержащее переменную в показателях степеней при некоторых постоянных основаниях.

Например: 1)5<sup>3
$$x$$
-1</sup> =125 2) $\frac{3}{4}^{x+3} = \frac{4}{3}^{x}$

2)
$$\frac{3}{4}^{x+3} = \frac{4}{3}^{x}$$

Простейшим показательным уравнением является уравнение вида

$$a^{f(x)} = a^{g(x)}$$
 (*), где $a > 0$, $a \neq 1$.

При решении показательных уравнений необходимо:

- 1) Привести обе части уравнения к одному основанию
- 2) Воспользоваться свойством: $a^{f(x)} = a^{g(x)} <=> f(x) = g(x)$.

При решении уравнений можно пользоваться формулами (свойства степеней): 1) $a^x \cdot a^y = a^{x+y}$ 3) $(a^x)^{y=}a^{x\cdot y}$ 5) $a^0 = 1$ > 7) $a^x \cdot b^x = (ab)^x$

$$1) a^x \cdot a^y = a^{x+y}$$

$$(a^x)^{y=}a^{x\cdot y}$$

5)
$$a^0 = 1$$

$$> 7) a^x \cdot b^x = (ab)^x$$

$$2)\frac{a^x}{a^y} = a^{x-y}$$

$$4) a^{-x} = \frac{1}{a^x}$$

$$6) \sqrt[n]{a^m} = a^{\frac{m}{n}}$$

$$2)\frac{a^x}{a^y} = a^{x-y} \qquad 4) a^{-x} = \frac{1}{a^x} \qquad 6) \sqrt[n]{a^m} = a^{\frac{m}{n}} \qquad 8) \frac{a^x}{b^x} = \left(\frac{a}{b}\right)^x$$

Пример 1.
$$6^{1-x} = \frac{1}{36^x}$$

Решение. Приведем уравнение к виду (*). Для этого необходимо левую и правую часть уравнения привести к одному основанию. Придем к основанию 6.

Преобразуем левую часть уравнения: $\frac{1}{36^x} = \frac{1}{6^{2x}} = \frac{1}{6^{2x}} = \pi$ по формуле 4 смотри выше = 6^{-2x} . Тогда получим:

$$6^{1-x} = 6^{-2x}$$

После того, как мы в левой и правой части уравнения пришли к одному основанию 6, воспользуемся свойством: $a^{f(x)} = a^{g(x)} < = > f(x) = g(x)$.

Из равенства двух степеней с одним основанием 6 следует равенство их показателей

$$1-x = -2x$$

$$-x+2x=-1$$

 $x=-1$.
 Other: $x=-1$.

$$25^{3x-4} = \sqrt{5} \cdot \left(\frac{1}{5}\right)^{2x+0.5}$$

Решение. Приведем уравнение к виду (*). Для этого у степеней должно быть одно основание. Приведем левую и правую часть уравненияк одному основанию 5, для этого применим

формулы 6 и 4:

$$25^{3x-4} = \overline{5} \cdot \frac{1}{5}^{2x+0,5}$$

$$5^{2} \cdot 3^{x-4} = 5^{\frac{1}{2}} \cdot 5^{-1} \cdot 2^{x+0,5}$$

$$5^{6x-8} = 5^{\frac{1}{2}} \cdot 5^{-2x-0,5}$$

$$5^{6x-8} = 5^{\frac{1}{2}+(-2x-0,5)}$$

$$5^{6x-8} = 5^{0,5-2x-0,5}$$

$$5^{6x-8} = 5^{-2x}$$

После того, как мы в левой и правой части уравнения пришли к одному основанию 5, воспользуемся свойством: $a^{f(x)} = a^{g(x)} <=> f(x) = g(x)$.

Из равенства двух степеней с одним основанием 5 следует равенство их показателей

$$6x-8=-2x;$$

$$6x + 2X = 8$$

$$8x = 8$$
;

$$x=1$$
.

Ответ: x = 1.

Пример 3.
$$\frac{1}{9}^{x} = \frac{1}{3}^{x-1}$$

Решение. Сначала придем к одному основанию $\frac{1}{3}$ в левой и в правой части. Для этого

представим $\frac{1}{9} = \frac{1}{3}^2$. Получим:

$$\frac{1}{9}^{x} = \frac{1}{3}^{x-1}$$

$$\frac{1}{3}^{2x} = \frac{1}{3}^{x-1}$$

$$\frac{1}{3}^{2x} = \frac{1}{3}^{x-1}$$

После того, как мы пришли к одному основанию $\frac{1}{3}$ в правой и левой части уравнения, отбросим основание $\frac{1}{3}$ и перейдем к выражениям, стоящим в степени. Получим:

$$2x = x - 1$$

$$2x-x = -1$$

 $x = -1$
Otbet: $x = -1$

Пример 4.
$$(0,5)^{2x} = 0,125$$

Решение. Сначала придем к одному основанию в левой и в правой части. Для этого перейдем от десятичных дробей к обычным:

$$\frac{5}{10}^{2x} = \frac{125}{1000}$$
$$\frac{1}{2}^{2x} = \frac{1}{8}$$

$$\frac{1}{2}^{2x} = \frac{1}{2}^{3}$$

После того, как мы пришли к одному основанию $\frac{1}{2}$ в правой и левой части уравнения, отбросим основание $\frac{1}{2}$ и перейдем к выражениям, стоящим в степени. Получим:

$$2x=3$$
 $X=\frac{3}{2}$
 $X=1\frac{1}{2}$
Other: $X=1\frac{1}{2}$

Пример 5. 16^x=0,125.

Решение. Сначала придем к одному основанию в левой и в правой части. Для этого перейдем от десятичных дробей к обычным:

$$16^{x} > \frac{125}{1000}.$$
$$16^{x} > \frac{1}{8}$$

Выразим все через 2:

$$(2^4)^x > \frac{1}{2^3}$$

По формуле 4 получим: $\frac{1}{2^3} = 2^{-3}$. Таким образом:

 $2^{4x} > 2^{-3}$ После того, как мы пришли к одному основанию 2 в правой и левой части уравнения, отбросим основание 2 и перейдем к выражениям, стоящим в степени. Получим:

$$4x = -3$$
$$X = \frac{-3}{4}$$

Ответ :
$$X = \frac{-3}{4}$$

Пример 6.
$$2^{x-1} = \frac{1}{3}$$

Решение. Сначала придем к одному основанию в левой и в правой части. Для этого воспользуемся формулой 6 и представим корень в виде степени. Затем воспользуемся формулой 4:

$$\frac{1}{\sqrt[3]{2}} = \frac{1}{\sqrt[2]{3}} = 2^{-\frac{1}{3}}$$

Таким образом, имеем: $2^{x-1} = 2^{-\frac{1}{3}}$

$$2^{x-1} = 2^{-\frac{1}{3}}$$

После того, как мы пришли к одному основанию 2 в правой и левой части уравнения, отбросим основание 2 и перейдем к выражениям, стоящим в степени. Получим:

$$x-1 = -\frac{1}{3}$$

$$x = -\frac{1}{3} + 1$$

$$x = \frac{2}{3}$$

$$x = \frac{2}{3}$$

Otbet:
$$x = \frac{2}{3}$$

2. Решите самостоятельно следующие показательные уравнения:

- 1) $0.5^{3x+2} = 4$
- 2) $\frac{1}{5}^{x+4} \cdot 5 = \overline{5}$ 3) $\frac{1}{81}^{x-3} = 9^x \cdot 3$