Составить отчет

Практическое занятие №79

Тема: Рабочее оборудование

Наименование работы: Определение конструкционных особенностей агрегатов гидравлической навесной системы тракторов.

Цели работы: Изучить назначение, устройство, работу агрегатов гидравлической навесной системы тракторов

Материально техническое оснащение рабочего места: учебные плакаты, учебная литература, альбом устройство автомобилей, комплект инструмента.

Литература: Л-1. Пузанков А.Г. Автомобили. Устройство автотранспортных средств. - М.: изд. Центр «Академия»,

- Л-2. Гельман Б.Н., Москвин Н.В. Сельскохозяйственные трактора и автомобили.
- Л-3. Гуревич А.М. и Сорокин Е.М. Трактора и автомобили. Тур Е.Я., Серебряков К.Б., Жолобов А.А. Устройство автомобилей.

Правила техники безопасности и противопожарной безопасности.

Строго соблюдать рабочую дисциплину, без дела не ходить по лаборатории, без разрешения не включать, выключать оборудования, без предупреждения других лиц не включать, отключать и вращать механизмы; открытым огнём не пользоваться, снятые узлы класть так, чтобы не скатились, болты и гайки заворачивайте, отворачивайте направляя усилия к себе.

Содержание и последовательность выполнения лабораторной работы.

- 1. Ознакомиться правилами техники безопасности и противопожарной безопасности при выполнении работы.
- 2. Изучить назначение и общее устройство агрегатов гидравлической навесной системы тракторов

Задание для отчёта.

1. Описать назначение, устройство и работу агрегатов гидравлической навесной

системы тракторов

2. После выполнения задания студент должен:

Знать: Назначение, классификацию, устройство и работу агрегатов гидравлической навесной системы тракторов

Уметь: Определить техническое состояние агрегатов гидравлической навесной системы тракторов

1. Назначение и устройство, работу центробежного регулятора.

Устройство гидросистемы тракторов

Гидросистема служит для трансформации и передачи энергии тракторного двигателя к различным исполнительным звеньям с целью:

- управления навесной машиной
- управление прицепной машиной через установленные на ней гидроцилиндры
- привода в движение рабочих органов навесных или прицепных машин через гидравлическую систему
- выполнения автосцепки с навесными и прицепными машинами
- изменения и автоматической поддержки выбранной глубины почвообработки
- корректировки вертикальной реакции почвы на движитель трактора
- выполнения вспомогательных операций по обслуживанию трактора (изменение базы, изменение колеи, подъем остова и т.п.)

В настоящее время широко применяется гидросистема раздельно-го агрегатного типа.

Унифицированная раздельно агрегатная гидравлическая навесная система тракторов (рис. 10.3) включает:

- насос с приводом и механизмом включения
- масляный бак
- фильтр
- стальные трубопроводы
- распределитель золотникового типа с механизмом управления
- эластичные рукава
- запорные и быстро соединительные муфты
- основной гидроцилиндр

• а так же - проходные штуцера, замедлительный клапан и уплотнительные устройства

Гидросистемы некоторых тракторов имеют гидроувеличитель сцепного веса с гидроаккумулятором, силовой регулятор или систему автоматического регулирования глубины обработки почвы (САРГ), гидросистему отбора мощности (ГСОМ).

Гидросистема построена так, что бы обеспечить максимально широкую работу исполнительного звена - гидроцилиндра двухстороннего действия (или гидроцилиндров нескольких независимым управлением). c Гидроцилиндр может иметь четыре основных состояния: движение поршня в одру сторону, движение поршня в другую сторону, фиксация поршня путём перекрытия маслу входа и выхода из гидроцилиндра, возможность свободного перемещения поршня в обе стороны от внешнего усилия за счет соединения обеих полостей гидроцилиндра межу собой и со сливной магистралью. Распределитель, в который от насоса поступает поток масла под давлением, обеспечивает один из четырёх вариантов работы гидроцилиндра. В этом случае распределитель имеет один золотник с осевым перемещением в одну четырех позиций. ИЗ

Для предохранения гидросистемы от чрезмерного повышения давления распределитель оснащается предохранительным клапаном отрегулированным на давление не выше 20,5 МПа.

Гидронасос является наиболее ответственным элементом гидросистемы. От него в большой мере зависит эффективность работы гидропривода. Наибольшее распространение получили шестеренные насосы типа НШ одно или двухсекционные. В тяжелых сельскохозяйственных и промышленных тракторах применяют так же аксиально-поршневые насосы как регулируемого, так и нерегулируемого типов.

Насос забирает масло через всасывающую магистраль из бака, емкость которого должна составлять 0,5 - 0,8 минутной производительности насоса. Очистка масла выполняется сетчатым фильтром или фильтром со сменным фильтровальным элементом, обеспечивающим удаление посторонних частиц размером от 25 мкм для жидкости, подаваемой от шестеренных насосов и распределителей с механическим управлением, и от 10 мкм для поршневых насосов и электрогидравлических распределителей/ Рассмотрим конкретные типовые конструкции узлов гидросистемы.

Гидронасосы (насосы нш)

Каждая модель насоса имеет определенное буквенно-цифровое обозначение, характеризующее его технические данные.

Так обозначение НШ 32 У-3-Л расшифровывается так:

НШ - насос шестеренный

32 объём рабочей жидкостей в cm^3 , вытесняемый из насоса за один оборот вала (теоретическая подача);

- У унифицированная конструкция;
- **3** группа исполнения, характеризующая номинальное давление нагнетания насоса: 2 14 МПа; 3 16 МПа; 4 20 МПа;
- Л левое направление вращение привода насоса. Если насос правого направления вращения, то соответствующей буквы в обозначении нет.

Рассмотрим конструкцию шестеренного гидронасоса и его привода.

На тракторах МТЗ -100, МТЗ -102 применен насос НШ 32-3 правого вращения (рис. 10.4) Нагнетание масла в насосе осуществляется при помощи ведущей 2 и ведомой 3 шестерни, расположенных между подшипниковой 1 и поджимной 5 обоймами и платиками 4. Подшипниковая обойма 1 служит единой опорой для цапф шестерен. Поджимная обойма 5 под давлением масла в полости манжеты (на рисунке не показана, расположена в зоне нагнетательного отверстия) поджимается к наружной поверхности зубьев шестерен, обеспечивая требуемый зазор между зубьями и уплотняющей поверхностью обоймы.

Платики 4 под давлением масла в полости торцовых манжет 16 и 14 поджимаются к шестерням 2 и 3, уплотняя их по боковым поверхностям в зоне высокого давления. Вал ведущей шестерни 2 в корпусе уплотняется двумя манжетами 19. Центрирование ведущего вала шестерни 2 относительно установочного бурта корпуса обеспечивается втулкой 20. Разъём корпуса с крышкой уплотняется с помощью резинового кольца круглого сечения.

https://ds05.infourok.ru/uploads/ex/0803/0010f7f2-9aa4df71/hello html m34322ce4.jpg

Рис. 10.4 Масляный насос НШ-32-3

1 - подшипниковая обойма; 2 - ведущая шестерня; 3 - ведомая шестерня; 4 - платик; 5 - поджимная обойма; 6,10 - шарикоподшипники; 7 - вал; 8 - шестерня; 9 - корпус; 11 - вилка; 12 - валик управления; 13 - промежуточная

шестерня; 14 - манжета; 15 - шайба; 16 - манжета; 17 - стакан подшипника; 18 - шпилька; 19 - манжета; 20 - втулка центрирующая

Насос закреплен четырьмя шпильками 18 на корпусе 9 гидроагрегатов через стакан 17, в котором он центрируется посадочным пояском корпуса. Шлицевой хвостовик ведущей шестерни 2 насос входит во внутренние шлицы вала 7, установленного на подшипниках 6 и 10.

При работающем двигателе вращение через шестерни привода независимого ВОМ и промежуточную шестерню 13 передается на шестерню 8 (при включенном положении), которая через шлицы передает вращение валу 7 и ведущей шестерне 2.

Шестерня 8 перемещается ручным механизмом управления через валик 12 с закрепленной на нем вилкой 11 и может фиксироваться ручкой управления в двух позициях: включенный привод, когда шестерня 8 находится из зацепления с шестерней 13. Включение или выключение от потребности в гидроприводе при работе МТА

Распределители

Распределители тракторной навески гидросистемы служат для распределения потока рабочей жидкости между потребителями, для автоматического переключения системы на режим холостого хода (перепуск рабочей жидкости в бак) в периоды, когда все потребители отключены, и для ограничения давления в гидросистеме при перегрузках.

На сельскохозяйственных тракторах наибольшее распространение получили моноблочные трехзолотниковый четырехпозиционные распределители с ручным управлением. На промышленных тракторах применяются моноблочные одно, двух или трехзолотниковый и обычно, трехпозиционные распределители с ручным и дистанционным управлением.

Тракторные распределители имеют буквенно-цифровое обозначение типа **P80** 3/1-222, **P80** 3/2-222, **P160** 3/1-222 - Здесь буква P - означает распределитель; две первые цифры при букве максимальную производительность насоса, л/мин, с которым распределитель может работать; остальные цифры и буквы - конструктивный вариант распределителя.

Типовой трехзолотниковый четырехпозиционный распределитель представлен на (рис. 10.5)

В корпусе 1 с каналами 2 устанавливают золотники 3, перепускной 7 и предохранительный клапан 11. К корпусу привернуты две крышки. В

верхней крышке 4 шарнирно укреплены рукоятки для управления золотниками. В нижней крышке 10 имеется полость для слива масла в бак. К распределителю по трубопроводу подводится масло от насоса. От распределителя по шести трубопроводам масло может поступать в поршневую и штоковую полости гидроцилиндров.

Перепускной клапан 11 сообщен каналом 6 с полостью над перепускным клапаном. При чрезмерном повышении давления в системе клапан 1 открывается и соединяет эту полость с полостью слива.

Схема действия распределителя при различных режимах работы представлена на рис. 10.6

Если орудие находится в транспортном положении и золотник установлен в нейтральном положении рис 10.6а, то масло по калиброванному отверстию 2 перепускного клапана 4 поступает в отводной канал 9 и далее в сливную полость 6 и масленый бак. Ввиду дросселирующего действия калиброванного отверстия 2 перепускной клапан отходит от седла 5 и масло поступает параллельно основному потоку через клапан в сливную полость.

https://ds05.infourok.ru/uploads/ex/0803/0010f7f2-9aa4df71/hello html 7c11f55c.jpg

Рис. 10.5 Трехзолотниковый четырехпозиционный распределитель

Нижняя полость гидроцилиндра 1 сообщается трубопроводом с каналом 8 распределителя, а верхняя полость - с каналом 7. Как видно из схемы кольцевые пояски золотника перекрывают оба канала, запирая масло в гидроцилиндре. При установке золотника в плавающее положение (рис. 10.6.б) масло, поступающее от насоса, сливается в бак через перепускной клапан и отводной канал 9. Обе полости гидроцилиндра сообщаются со сливной полостью распределителя. Навесной орудие под действием веса опускается и рабочие органы его заглубляются (под действием заглубляющего момента). Величина заглубления ограничена положением опорного колеса орудия. При выполнении технологического процесса золотник остается в плавающем положении и опорные колеса орудия при этом могут свободно копировать рельеф поля.

Подъем орудия в транспортное положение происходит при установке золотника в положение «подъем» (рис. 10.6.в) В этом случае золотник перекрывает отводной канал 9 и одновременно открывает доступ маслу из нагнетательного канала 3 в канал 8, который сообщается с нижней полостью гидроцилиндра 1.

Рис. 10.6 Схема работы распределителя раздельноагрегатной навесной системы в положениях:

А – нейтральное; б – плавающее; в – подъем; г – опускание

При принудительном опускании орудия (рис. 10.6.г) перепускной клапан закрыт; в верхнюю полость гидроцилиндра поступает масло из нагнетательного канала 3, а из нижней полости гидроцилиндра масло вытесняется и поступает в бак. Принудительное опускание применяется при работе тракторов с ямокопателями, бульдозерами и некоторыми другими специальными машинами.

Ручной установкой золотника в нейтральное положение можно зафиксировать поршень гидроцилиндра в любом промежуточном положении.

В заданных положениях (плавающем, нейтральном и др.) золотник удерживается шариковым фиксатором 12 (см. рис. 10.5). Причем это устройство предусматривает автоматический возврат золотника из положений «подъем» и «опускание» в нейтральное положение. Из плавающего положения в нейтральное золотник переводится только вручную. Чтобы обеспечить качественную защиту гидравлики трактора ДТ 75 от чрезмерных перегрузок, гидрораспределители оснащаются специальным клапаном с функцией предохранения – он срабатывает как только давление достигнет 1,3-1,5 МПа. Как только давление превышает установленные пределы, клапан отходит от седла, что приводит к соединению полости над поршнями со сливом. В результате такого действия давление над поршнем начинает снижаться и становится ниже, нежели в напорной части. После этого открывается доступ к главному масляному потоку. Редукционный клапан представляет собой автоматический гидравлический дроссель — устройство, создающее сопротивление потоку жидкости и обладающее возможностью изменять интенсивность этого потока в зависимости от гидравлического давления. В определенном диапазоне давлений перепускной клапан закрыт или создает высокое сопротивление потоку жидкости, при превышении некоторого порогового давления клапан открывается и сбрасывает излишки топлива из насоса, предотвращая дальнейший рост давления.

Перепускной клапан входит в состав секции низкого давления ТНВД, он работает автоматически и лишь нуждается в регулировании для установления порога срабатывания.

<u>Гидроцилиндры</u>

Гидроцилиндр (объемный гидродвигатель возвратно-поступательного движения) применяется для привода механизмов навески трактора разного типа в качестве выносного гидроцилиндра. Выносные гидроцилиндры в

отличие от основных имеют быстросъемные присоединительные устройства, облегчающие их монтаж и демонтаж.

Для раздельноагрегатных гидросистем гидроцилиндры могут быть трех исполнений, обозначаемых цифрами 2, 3 и 4, что соответствует номинальному давлению жидкости соответственно в 14,16 и 20 МПа. В обозначении гидроцилиндра буква Ц — цилиндр, а цифры при букве — внутренний диаметр цилиндра, мм. Единый типоразмерный ряд гидроцилиндров охватывает шесть марок: Ц55, Ц75, Ц80, Ц100, Ц125 и Ц140

В зависимости от исполнения конструкции гидроцилиндров отличаются друг от друга.

В исполнении 2 гидроцилиндр (рис.10.7) имеет корпус разбирающийся на три основные части: цилиндр 9, задняя крышка 2 и передняя крышка 23. Все части стягиваются четырьмя длинными шпильками или болтами. Уплотнение крышек 2 и 23, штока 8 и поршня 6 производится резиновыми кольцами 3,5,7,10 и 16. Для предотвращения попадания грязи в гидроцилиндр установлен «чистик» 13, состоящий из пакета стальных шайб. Для регулирования величины рабочего хода поршня 6 служат подвижный упор 15 и гидромеханический клапан 18, перекрывающий выход масла из цилиндра и вызывающий повышение давления в системе и автоматический возврат золотника в нейтральное

положение.

https://ds05.infourok.ru/uploads/ex/0803/0010f7f2-9aa4df71/hello html m23a8a63b.jpg

Рис. 10.7 Гидроцилиндр:

1 - бугель; 2 - задняя крышка; 3,5,7,10,16 — уплотнительные резиновые кольца; 4 - кольцо; 6 — поршень; 8 - шток; 9 - цилиндр; 11 - болт; 12 — шайба; 13 — «чистик»; 14 — барашковая гайка; 15 — упор; 17-направляющая клапана; 18 — гидромеханический клапан; 19 — гнездо клапана; 20 — штуцер замедлительного клапана; 21 — шайба замедлительного клапана; 23 — передняя крышка, 24 — гайка; 25 — соединительная трубка; 26 — болт; 27 — штуцер; 28 — гайка штока

Плавное опускание навесной машины обеспечивается установкой на выходе гидроцилиндра замедлительного клапана, состоящего из штуцера 20 и плавающей шайбы 21 с калиброванным отверстием.

В исполнении 3 корпус гидроцилиндра состоит из двух основных частей: стакан корпуса цилиндра приворачивается к нижней крышке, а верхняя крышка крепится четырьмя короткими болтами к фланцу, приваренному к верхней части стакана. На цилиндре отсутствует гидромеханический клапан.

Гидролинии

Гидролинии раздельноагрегатных гидросистем имеют большую протяженность и включают трубопроводы, шланги (рукава высокого давления), соединительные и разрывные муфты с запорными клапанами и уплотнения. По назначению гидролинии делятся на всасывающие, напорные, сливные, дренажные и линии управления.

Металлические трубопроводы напорных гидролиний изготовляют из стальных бесшовных труб, рассчитанных на давление до 32 МПа с внутренним диаметром 10,12,14,16,20,24 и 30 мм. Их наконечники представляют собой ниппель, приваренный к трубе с предварительно надетой накидной гайкой или приваренную полую головку под специальный полый болт с металлическими уплотнительными прокладками.

Трубопроводы изгибаются на специальном станке, исключающем образованием складок и сплющиваний на местах изгиба.

Шланги (рукава высокого давления) применяют для соединения гидроагрегатов, имеющих взаимное перемещение.

Гибкий резинометаллический рукав состоит из резиновой камеры, хлопчатобумажной или капроновой оплётки, металлической оплетки, второго слоя капроновой оплетки, наружного резинового слоя и верхнего слоя таки (бандаж). В рукавах применяется маслостойкая резина.

При необходимости рукава соединяют между собой с помощью проходных штуцеров.

Соединительные и разрывные муфты (рис.10.8) применяют для подключения выносных гидроцилиндров и вставляются в местах соединения (разъединения) рукавов.

Соединительная муфта

Соединительная муфта состоит из двух полумуфт 1 и 8 (рис. 10.8a) вставляемых друг в друга и стягиваемых резьбовым соединением с помощью накидной гайки 6. Уплотнение осуществляется резиновым кольцом 7. Два

шарика 5, прижимаются, друг к другу с образованием кольцевого канала, через который перетекает масло. При разъединении полумуфт 1 и 8 шарики 5 под действием пружин прижимаются к седлам полумуфт, запирая их выходные отверстия и препятствуя вытеканию масла. Наряду с резьбовыми применяют быстросоединяемые муфты, в которых полумуфты фиксируются друг с другом шариковым замком.

Разрывная муфта устанавливается обычно на прицепном гидрофицированном орудии между рукавами, подводящими масло к выносному гидроцилиндру и служит в качестве предохранительного устройства при внезапном непредусмотренном отцеплении орудия или при отъезде трактора от отцепленного

орудия, но с присоединенными к трактору шлангами.

Рис. 10.8 Муфты: а - соединительная; б – разрывная

Разрывная муфта (рис. 10.8.б) во многом аналогична соединительной муфте, но вместо резьбового соединения имеет шариковый замок. В случае возникновения осевого усилия в стыке полумуфт более 200...250 Н замковые шарики 9 выходят из кольцевой проточки полумуфты 10 и, воздействуя на запорную втулку 11, заставляют ее перемещаться вправо, сжимая пружину 13. Происходит разъединение полумуфт, исключающее разрыв шлангов и вытекания масла.

Баки и фильтры

Баки гидронавесных систем тракторов служат резервуаром для рабочей жидкости — масла.

Объем бака зависит от количества потребителей и из особенностей и составляет 0,5...0,8 минутной объемной подачи насоса (насосов). Масло фильтруется полнопоточным фильтром со сменным фильтрующим элементом и перепускным клапаном, перепускающим масло мимо фильтра в случае его сильного загрязнения и повышения давления до 0,25...0,35 МПа.