Эти темы вы писали на последней паре! Если не дописали- допишите! ВСЕ ЭТО ДОЛЖНО БЫТЬ У КАЖДОЙ В ТЕТРАДИ!!!!

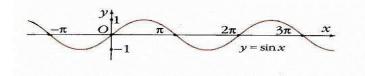
Тригонометрические функции. Их свойства и графики.

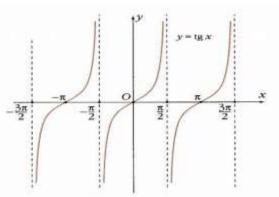
Свойства	$y = \sin x$	$y = \cos x$	y = tg x
D(f) - область определения функции	$D(sin) = \mathbf{R}$ - множество всех действительных чисел	$D(cos) = \mathbf{R}$ - множество всех действительных чисел	$D(tg) = \left(-\frac{\pi}{2} + \pi \cdot k; \frac{\pi}{2} + \pi \cdot k\right), k \in \mathbb{Z}$
E(f) - множество значений функции	$E(sin) = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$	$E(\cos) = \begin{bmatrix} -1 \\ ; 1 \end{bmatrix}$	E(tg) = R
Четность функции	нечетная $sin(-x) = -sinx$	четная $cos(-x) = cosx$	нечетная $tg(-x) = tgx$
Наименьший положительный период	$T = 2\pi$ $sin(x+2\pi n) = sinx, \ n \in \mathbb{Z}$	$T = 2\pi$ $cos(x+2\pi n) = cosx_1 n \in \mathbb{Z}$	$T = \pi$ $tg(x + \pi n) = tgx, \ n \in \mathbb{Z}$
Нули функции	$\sin x = 0$ при $x = \pi n$, $n \in \mathbb{Z}$	$\cos x = 0$ при $x = 2\pi + \pi n$, $n \in \mathbb{Z}$	$tg x = 0$ при $x=\pi n$, $n \in \mathbb{Z}$
Промежутки знакопостоянства $f(x) > 0$	$\sin x > 0$ для всех $x \in (2\pi n; \pi + 2\pi n)$, $n \in \mathbb{Z}$	$\cos x > 0$ для всех $x \in (-2\pi + 2\pi n; 2\pi + 2\pi n), n \in \mathbb{Z}$	$tg \ x > 0$ для всех $x \in (\pi n; 2\pi + \pi n), n \in \mathbb{Z}$
Промежутки знакопостоянства $f(x) < 0$	$sin \ x < 0$ для всех $x \in (\pi + 2\pi n; 2\pi + 2\pi n), n \in Z$	$\cos x < 0$ для всех $x \in (2\pi + 2\pi n; 2\pi + 2\pi n), n \in \mathbb{Z}$	$tg\;x<0$ для всех $x\in \left(-2\pi +\pi n;\pi n\right) ,\;n\in Z$
Промежутки возрастания функции	$[-2\pi+2\pi n; 2\pi+2\pi n]$	$\left[-\pi+2\pi n;2\pi n\right]$	$(-2\pi+\pi n;2\pi+\pi n)$
Промежутки убывния функции	$\left[_{2\pi+2\pi n;2\pi+2\pi n}\right]$	$[2\pi n;\pi+2\pi n]$	нет

График функции синус называют "синусоида»

График функции косинус называют "косинусоида"

График функции тангенс называют "тангенсоида»



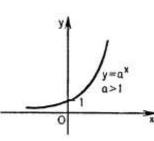


Показательная функция, ее свойства и график.

Функция, заданная формулой вида $y = a^x$, где a — некоторое положительное число, не равное единице, называется **показательной**.

І. Функция $y = a^x$ при a > 1 обладает следующими свойствами :

- 1) область определения $D(y):(-\infty;+\infty);$
- 2) множество значений $E(y):(0;+\infty)$;
- 3) нулей функции не существует (нет точек пересечения с Ох);
- 4) функция является ни чётной, ни нечётной;
- 5)функция возрастает в <math>D(y);
- 6) $ecnu \ x > 0$, $mo \ a^x > 1$; $ecnu \ x < 0$, $mo \ 0 < a^x < 1$.
- 7) при x = 0 значение функции равно 1.



- **II.** Функция $y = a^x$ при 0 < a < 1 обладает следующими свойствами:
- 1) область определения $D(y):(-\infty;+\infty)$;
- 2) множество значений $E(y):(0;+\infty)$;
- 3) нулей функции не существует (нет точек пересечения с Ох);
- 4) функция является ни чётной, ни нечётной;
- 5) функция убывает;
- 6) если x > 0, то $0 < a^x < 1$; если x < 0, то $a^x > 1$.
- 7) при x = 0 значение функции равно 1;

Обратные тригонометрические функции. Их свойства и графики.

Свойства	$y = \arcsin x$	y = arccos x	y = arctg x
D(f) - область определения функции	$D(arcsin) = \begin{bmatrix} -1 \\ ; 1 \end{bmatrix}$	$D(arccos) = \begin{bmatrix} -1, 1 \end{bmatrix}$	$D(arctg) = \mathbf{R}$ - множество всех действительных чисел
E(f) - множество значений функции	$E(arcsin) = [-\pi/2 ; \pi/2]$	$E(arccos) = [0; \pi]$	E(arctg) = R
Четность функции	нечетная arcsin (-x) = - arcsin	Ни четная, ни нечётная	нечетная $arctg(-x) = arctg x$
Периодичность функции	непериодическая	непериодическая	непериодическая
Нули функции	sin x = 0 при $x=0$	arccos x = 0 при $x=1$	arctg x = 0 при $x=0$
Промежутки знакопостоянства	arcsin x>0 npu x>0 arcsin x<0 npu x<0	arccos x>0 B D(f)	arctg x>0 npu x>0 arctg x<0 npu x<0
Промежутки монотонности функции	Возрастает в D(f)	Убывает в $D(f)$	Возрастает в D(f)
График	# 1	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\frac{\pi}{2}$ $\frac{\pi}{4}$ $\frac{\pi}{4}$ $\frac{\pi}{4}$ $\frac{\pi}{4}$ $\frac{\pi}{4}$ $\frac{\pi}{4}$ $\frac{\pi}{4}$

ЭТО ТЕМА СЕГОДНЯШНЕГО УРОКА!!! ЗАПИШИТЕ ЭТОТ ТЕОРЕТИЧЕСКИЙ МАТЕРИАЛ В ТЕТРАДЬ!!!

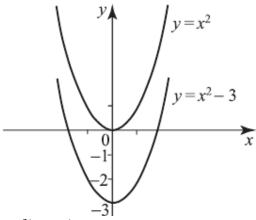
Тема «Основные преобразования графиков функций»

Пусть задан график функции y = f(x). Чтобы построить график функции

1. y = f(x) + n

График функции y = f(x) + n получается из графика функции f(x) параллельным переносом последнего вдоль оси ординат на n = 0 и, соответственно на n = 0 и, соответственно на n = 0 и.

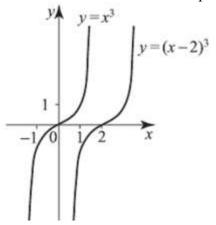
Например, построим график функции $y=x^2-3$. Сначала построим график функции $y=x^2$, а затем сдвинем его на 3 единицы вниз.



2. y = f(x + m)

График функции y = f(x + m) получается из графика функции f(x) параллельным переносом последнего на m = 0 и, соответственно на m = 0 и, соответственно на m = 0.

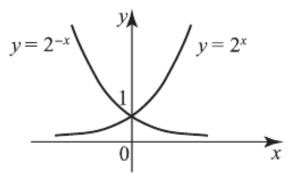
Например, построим график Преобразование графиков функций $y=(x-2)^3$. Сначала построим график функции $y=x^3$, а затем сдвинем его на 2 единицы вправо.



3. y = -f(x)

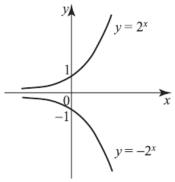
График функции y = -f(x) получается из графика функции f(x) преобразованием симметрии относительно оси x. (Преобразование симметрии - зеркальное отражение относительно прямой.)

Например, построим график функции $y=2^{-x}$. Сначала построим график функции $y=2^x$, а затем отобразим его симметрично относительно оси X.



4. y = f(-x)

График функции y = f(-x) получается из графика функции f(x) преобразованием симметрии относительно оси у Например, построим график функции $y=-2^x$. Сначала построим график функции $y=2^x$, а затем отобразим его симметрично относительно оси У.

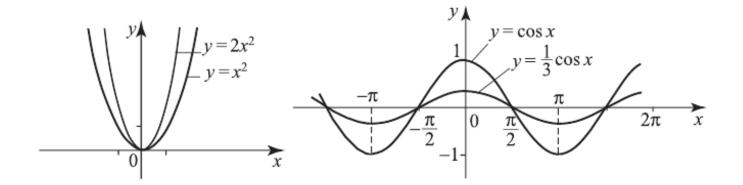


5. y = mf(x),

График функции y = mf(x), где m > 0 и $m \ne 1$, нужно ординаты точек заданного графика умножить на m. Такое преобразование называется растяжением от оси x с коэффициентом m, если m > 1, и сжатием k оси k, если k оси k, если k оси k.

Например, построим график функции $y=2x^2$. Сначала построим график функции $y=x^2$, а затем, так как 2>1, то растяжением его от оси x с коэффициентом 2.

Например, построим график функции $y = \frac{1}{3}\cos x$. Сначала построим график функции $y = \cos x$, а затем, так как 0 < 1/3 < 1., то сжимаем его к оси x,



6. y = f(kx)

График функции y = f(kx), где k > 0 и $k \ne 1$. Искомый график функции получается из заданного сжатием с коэффициентом k к оси y (если 0 < k < 1 указанное "сжатие" фактически является растяжением с коэффициентом 1/k)

